A positive Liapunov exponent for the critical value of an S-unimodal mapping implies uniform hyperbolicity
Autor: | Tomasz Nowicki |
---|---|
Rok vydání: | 1988 |
Předmět: |
Mathematics::Dynamical Systems
Conjecture Applied Mathematics General Mathematics Mathematical analysis Monotonic function Critical value Exponential function Nonlinear Sciences::Chaotic Dynamics Combinatorics Critical point (thermodynamics) Hyperbolic set Exponent Orbit (control theory) Mathematics |
Zdroj: | Ergodic Theory and Dynamical Systems. 8:425-435 |
ISSN: | 1469-4417 0143-3857 |
DOI: | 10.1017/s0143385700004569 |
Popis: | A positive Liapunov exponent for the critical value of an S-unimodal mapping implies a positive Liapunov exponent of the backward orbit of the critical point, uniform hyperbolic structure on the set of periodic points and an exponential diminution of the length of the intervals of monotonicity. This is the proof of the Collet-Eckmann conjecture from 1981 in the general case. |
Databáze: | OpenAIRE |
Externí odkaz: |