On the super-approximation property of Galerkin's method with finite elements
Autor: | S. Prössdorf |
---|---|
Rok vydání: | 1991 |
Předmět: | |
Zdroj: | Numerische Mathematik. 59:711-722 |
ISSN: | 0945-3245 0029-599X |
DOI: | 10.1007/bf01385805 |
Popis: | For Galerkin's method with finite elements as trial functions for strongly elliptic operator equations in the Hilbert scaleH t the super-approximation property and the optimal convergence rate are obtained by using the Aubin-Nitsche lemma. This applies in particular to spline collocation methods for a wide class of pseudodifferential equations. |
Databáze: | OpenAIRE |
Externí odkaz: |