The minimum Wiener index of unicyclic graphs with a fixed diameter
Autor: | Shang-wang Tan |
---|---|
Rok vydání: | 2016 |
Předmět: |
Discrete mathematics
Applied Mathematics 010102 general mathematics Unicyclic graphs 0102 computer and information sciences Wiener index 01 natural sciences Combinatorics Branching (linguistics) Computational Mathematics 010201 computation theory & mathematics Topological index Theory of computation 0101 mathematics Connectivity Mathematics |
Zdroj: | Journal of Applied Mathematics and Computing. 56:93-114 |
ISSN: | 1865-2085 1598-5865 |
DOI: | 10.1007/s12190-016-1063-2 |
Popis: | The Wiener index is the sum of distances between all pairs of distinct vertices in a connected graph, which is the oldest topological index related to molecular branching. In the article we characterize the graphs having the minimum Wiener index among all n-vertex unicyclic graphs with a fixed diameter. |
Databáze: | OpenAIRE |
Externí odkaz: |