A method for predicting static-to-flight effects on coaxial jet noise

Autor: Cyrus B. Chinoy, William D. Bryce
Rok vydání: 2016
Předmět:
Zdroj: Journal of Sound and Vibration. 375:132-161
ISSN: 0022-460X
DOI: 10.1016/j.jsv.2016.04.017
Popis: Previously-published work has provided a theoretical modelling of the jet noise from coaxial nozzle configurations in the form of component sources which can each be quantified in terms of modified single-stream jets. This modelling has been refined and extended to cover a wide range of the operating conditions of aircraft turbofan engines with separate exhaust flows, encompassing area ratios from 0.8 to 4. The objective has been to establish a basis for predicting the static-to-flight changes in the coaxial jet noise by applying single-stream flight effects to each of the sources comprising the modelling of the coaxial jet noise under static conditions. Relatively few experimental test points are available for validation although these do cover the full extent of the jet conditions and area ratios considered. The experimental results are limited in their frequency range by practical considerations but the static-to-flight changes in the third-octave SPLs are predicted to within a standard deviation of 0.4 dB although the complex effects of jet refraction and convection cause the errors to increase at low flight emission angles to the jet axis. The modelling also provides useful insights into the mechanisms involved in the generation of coaxial jet noise and has facilitated the identification of inadequacies in the experimental simulation of flight effects.
Databáze: OpenAIRE