Modeling and Experimental Characterization of Pressure Drop in Gravity-Driven Microfluidic Systems
Autor: | Nathaniel Narra Girish, Antti-Juhana Mäki, Joose Kreutzer, Samu Hemmilä, Jari Hyttinen, Juha Hirvonen, Pasi Kallio |
---|---|
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Journal of Fluids Engineering. 137 |
ISSN: | 1528-901X 0098-2202 |
DOI: | 10.1115/1.4028501 |
Popis: | Passive pumping using gravity-driven flow is a fascinating approach for microfluidic systems. When designing a passive pumping system, generated flow rates should be known precisely. While reported models used to estimate the flow rates do not usually consider capillary forces, this paper shows that their exclusion is unrealistic in typical gravity-driven systems. Therefore, we propose a new analytical model to estimate the generated flow rates. An extensive set of measurements is used to verify that the proposed model provides a remarkably more precise approximation of the real flow rates compared to the previous models. It is suggested that the developed model should be used when designing a gravity-driven pumping system. |
Databáze: | OpenAIRE |
Externí odkaz: |