Power logit regression for modeling bounded data
Autor: | Francisco F. Queiroz, Silvia L. P. Ferrari |
---|---|
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Statistical Modelling. :1471082X2211401 |
ISSN: | 1477-0342 1471-082X |
DOI: | 10.1177/1471082x221140157 |
Popis: | The main purpose of this article is to introduce a new class of regression models for bounded continuous data, commonly encountered in applied research. The models, named the power logit regression models, assume that the response variable follows a distribution in a wide, flexible class of distributions with three parameters, namely, the median, a dispersion parameter and a skewness parameter. The article offers a comprehensive set of tools for likelihood inference and diagnostic analysis, and introduces the new R package PLreg. Applications with real and simulated data show the merits of the proposed models, the statistical tools, and the computational package. |
Databáze: | OpenAIRE |
Externí odkaz: |