Autor: Adrian F. M. Smith, David G. T. Denison, Bani K. Mallick
Rok vydání: 1998
Předmět:
Zdroj: Statistics and Computing. 8:337-346
ISSN: 0960-3174
DOI: 10.1023/a:1008824606259
Popis: A Bayesian approach to multivariate adaptive regression spline (MARS) fitting (Friedman, 1991) is proposed. This takes the form of a probability distribution over the space of possible MARS models which is explored using reversible jump Markov chain Monte Carlo methods (Green, 1995). The generated sample of MARS models produced is shown to have good predictive power when averaged and allows easy interpretation of the relative importance of predictors to the overall fit.
Databáze: OpenAIRE