The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation

Autor: Minbo Yang, Fashun Gao
Rok vydání: 2018
Předmět:
Zdroj: Science China Mathematics. 61:1219-1242
ISSN: 1869-1862
1674-7283
DOI: 10.1007/s11425-016-9067-5
Popis: We establish some existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation $$ - \Delta u = \left( {\int_\Omega {\frac{{{{\left| {u\left( y \right)} \right|}^{2_\mu ^*}}}}{{{{\left| {x - y} \right|}^\mu }}}dy} } \right){\left| u \right|^{2_\mu ^* - 2}}u + \lambda uin\Omega ,$$ , where Ω is a bounded domain of R N with Lipschitz boundary, λ is a real parameter, N ≥ 3, $$2_\mu ^* = \left( {2N - \mu } \right)/\left( {N - 2} \right)$$ is the critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality.
Databáze: OpenAIRE