Effects of Energetic Solar Emissions on the Earth–Ionosphere Cavity of Schumann Resonances

Autor: Earle Williams, Y. M. Yampolski, Alexander Koloskov, Robert Boldi, Colin Price, Gabriella Sátori, Veronika Barta, Anirban Guha
Rok vydání: 2016
Předmět:
Zdroj: Surveys in Geophysics. 37:757-789
ISSN: 1573-0956
0169-3298
DOI: 10.1007/s10712-016-9369-z
Popis: Schumann resonances (SR) are the electromagnetic oscillations of the spherical cavity bounded by the electrically conductive Earth and the conductive but dissipative lower ionosphere (Schumann in Z Naturforsch A 7:6627–6628, 1952). Energetic emissions from the Sun can exert a varied influence on the various parameters of the Earth’s SR: modal frequencies, amplitudes and dissipation parameters. The SR response at multiple receiving stations is considered for two extraordinary solar events from Solar Cycle 23: the Bastille Day event (July 14, 2000) and the Halloween event (October/November 2003). Distinct differences are noted in the ionospheric depths of penetration for X-radiation and solar protons with correspondingly distinct signs of the frequency response. The preferential impact of the protons in the magnetically unshielded polar regions leads to a marked anisotropic frequency response in the two magnetic field components. The general immunity of SR amplitudes to these extreme external perturbations serves to remind us that the amplitude parameter is largely controlled by lightning activity within the Earth–ionosphere cavity.
Databáze: OpenAIRE