Electrochemically active porous carbon nanospheres prepared by inhibition of pyrolytic condensation of polymers

Autor: Jaehyun Kim, Dayoung Lee, Cheolho Kim, Haeli Lee, Seungjun Baek, Jun Hyuk Moon
Rok vydání: 2023
Předmět:
Zdroj: Proceedings of the National Academy of Sciences. 120
ISSN: 1091-6490
0027-8424
Popis: Porous carbon is a pivotal material for electrochemical applications. The manufacture of porous carbon has relied on chemical treatments (etching or template) that require processing in all areas of the carbon/carbon precursor. We present a unique approach to preparing porous carbon nanospheres by inhibiting the pyrolytic condensation of polymers. Specifically, the porous carbon nanospheres are obtained by coating a thin film of ZnO on polystyrene spheres. The porosity of the porous carbon nanospheres is controlled by the thickness of the ZnO shell, achieving a BET-specific area of 1,124 m 2 /g with a specific volume of 1.09 cm 3 /g. We confirm that under the support force by the ZnO shell, a hierarchical pore structure in which small mesopores are connected by large mesopores is formed and that the pore-associated sp 3 defects are enriched. These features allow full utilization of the surface area of the carbon pores. The electrochemical capacitive performance of porous carbon nanospheres was evaluated, achieving a high capacitance of 389 F/g at 1 A/g, capacitance retention of 71% at a 20-fold increase in current density, and stability up to 30,000 cycles. In particular, we achieve a specific area-normalized capacitance of 34.6 μF/cm 2 , which overcomes the limitations of conventional carbon materials.
Databáze: OpenAIRE