Remarks on the Bohr and Rogosinski phenomena for power series
Autor: | Lev Aizenberg |
---|---|
Rok vydání: | 2012 |
Předmět: |
Power series
Algebra and Number Theory Mathematics::Complex Variables Mathematical analysis Holomorphic function Annulus (mathematics) Function (mathematics) Radius Basis (universal algebra) Bohr model symbols.namesake symbols Astrophysics::Earth and Planetary Astrophysics Mathematical Physics Analysis Mathematics Mathematical physics |
Zdroj: | Analysis and Mathematical Physics. 2:69-78 |
ISSN: | 1664-235X 1664-2368 |
DOI: | 10.1007/s13324-012-0024-7 |
Popis: | The following problems are discussed in this work. 1. Asymptotics of the majorant function in the Reinhardt domains in \({\mathbb C^n}\). 2. The Bohr and Rogosinski radii for Hardy classes of functions holomorphic in the disk. 3. Neither Bohr nor Rogosinski radius exists for functions holomorphic in an annulus, with natural basis. 4. The Bohr and Rogosinski radii for the mappings of the Reinhardt domains into Reinhardt domains. |
Databáze: | OpenAIRE |
Externí odkaz: |