MEAN VALUE OF ANALYTIC OPERATOR FUNCTIONS

Autor: Ming Jian, Xiaopei Yu
Rok vydání: 1995
Předmět:
Zdroj: Acta Mathematica Scientia. 15:468-473
ISSN: 0252-9602
DOI: 10.1016/s0252-9602(18)30069-9
Popis: In this paper, it is proved that if A is a normal proper contraction on Hilbert space and F(z) = U(z) + iV(z) is operator-valued analytic on the unit disc Δ and 0 < p < 1, then ‖ F ( A ) ‖ p ≤ ‖ F ( 0 ) ‖ p + C p ( 1 - ‖ A ‖ ) - 2 × sup 0 & t & 1 ∬ Δ ‖ U [ ( A t - ξ I ) ( I - ξ A * t ) - 1 ] ‖ p d m ( ξ ) .
Databáze: OpenAIRE