MEAN VALUE OF ANALYTIC OPERATOR FUNCTIONS
Autor: | Ming Jian, Xiaopei Yu |
---|---|
Rok vydání: | 1995 |
Předmět: | |
Zdroj: | Acta Mathematica Scientia. 15:468-473 |
ISSN: | 0252-9602 |
DOI: | 10.1016/s0252-9602(18)30069-9 |
Popis: | In this paper, it is proved that if A is a normal proper contraction on Hilbert space and F(z) = U(z) + iV(z) is operator-valued analytic on the unit disc Δ and 0 < p < 1, then ‖ F ( A ) ‖ p ≤ ‖ F ( 0 ) ‖ p + C p ( 1 - ‖ A ‖ ) - 2 × sup 0 & t & 1 ∬ Δ ‖ U [ ( A t - ξ I ) ( I - ξ A * t ) - 1 ] ‖ p d m ( ξ ) . |
Databáze: | OpenAIRE |
Externí odkaz: |