Finite Subgroups of the Relatively Free $$\boldsymbol{n}$$-Torsion Groups
Autor: | G. G. Gevorgyan, A. L. Gevorgyan |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences). 55:1-4 |
ISSN: | 1934-9416 1068-3623 |
DOI: | 10.3103/s1068362320010045 |
Popis: | A group is called an $$n$$-torsion group if it has a system of defining relations of the form $$r^{n}=1$$ for some elements $$r$$, and for any of its finite order element $$a$$ the defining relation $$a^{n}=1$$ holds. In this paper, we prove that all the finite subgroups of the relatively free $$n$$-torsion groups are cyclic groups. Notice that for each rank $$m>1$$ and for any odd $$n\geq 1003$$, the set of nonisomorphic relatively free $$n$$-torsion groups of rank $$m$$ has the cardinality of the continuum. |
Databáze: | OpenAIRE |
Externí odkaz: |