Basis Properties in $${\varvec{L}}_{{\varvec{p}}}$$ L p of Root Functions of Sturm–Liouville Problem with Spectral Parameter-Dependent Boundary Conditions
Autor: | Ziyatkhan S. Aliyev, Yashar T. Mehraliyev, Aida A. Dunyamaliyeva |
---|---|
Rok vydání: | 2017 |
Předmět: |
Pure mathematics
Basis (linear algebra) General Mathematics Operator (physics) 010102 general mathematics Mathematical analysis Root (chord) Sturm–Liouville theory Mathematics::Spectral Theory Space (mathematics) 01 natural sciences 0103 physical sciences Pi 010307 mathematical physics Boundary value problem 0101 mathematics Eigenvalues and eigenvectors Mathematics |
Zdroj: | Mediterranean Journal of Mathematics. 14 |
ISSN: | 1660-5454 1660-5446 |
DOI: | 10.1007/s00009-017-0933-7 |
Popis: | In this paper, we consider the Sturm–Liouville problem with spectral parameter in the boundary conditions. We associate this problem with a self-adjoint operator in the Pontryagin space \(\Pi _{2}\). Using this operator-theoretic formulation and analytic methods, we study the basis properties in the space \(L_{p} (0,1),\,1 |
Databáze: | OpenAIRE |
Externí odkaz: |