Large Toeplitz operators and quadratic forms generated by a stationary Gaussian sequence

Autor: Valentin Solev, Léo Gerville-Réache
Rok vydání: 2006
Předmět:
Zdroj: Journal of Mathematical Sciences. 139:6625-6630
ISSN: 1573-8795
1072-3374
DOI: 10.1007/s10958-006-0378-1
Popis: Let \(\Gamma _n (f,g) = \sum\limits_{ - n \leqslant t, s \leqslant n} {g_{t - s} X_t X_s } \) be a Toeplitz quadratic form generated by a real-valued function \(g(u) = \sum\limits_{ - \infty }^\infty {g_k e^{iku} } \) and a stationary sequence Xn with spectral density f. Many sufficient conditions for the asymptotic normality of the normalized quadratic form Ψn(f, g) have been proposed since 1958. The simplest one was given by L. Giraitis and D. Surgailis in 1990. Using the operator approach, we suggest a new vision of the problem and propose a new efficient condition on the pair of functions (f, g). Bibliography: 9 titles.
Databáze: OpenAIRE