Large Toeplitz operators and quadratic forms generated by a stationary Gaussian sequence
Autor: | Valentin Solev, Léo Gerville-Réache |
---|---|
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Journal of Mathematical Sciences. 139:6625-6630 |
ISSN: | 1573-8795 1072-3374 |
DOI: | 10.1007/s10958-006-0378-1 |
Popis: | Let \(\Gamma _n (f,g) = \sum\limits_{ - n \leqslant t, s \leqslant n} {g_{t - s} X_t X_s } \) be a Toeplitz quadratic form generated by a real-valued function \(g(u) = \sum\limits_{ - \infty }^\infty {g_k e^{iku} } \) and a stationary sequence Xn with spectral density f. Many sufficient conditions for the asymptotic normality of the normalized quadratic form Ψn(f, g) have been proposed since 1958. The simplest one was given by L. Giraitis and D. Surgailis in 1990. Using the operator approach, we suggest a new vision of the problem and propose a new efficient condition on the pair of functions (f, g). Bibliography: 9 titles. |
Databáze: | OpenAIRE |
Externí odkaz: |