Phylogenetic relationship of 40 species of genus Aloe L. and the origin of an allodiploid species revealed by nucleotide sequence variation in chloroplast intergenic space and cytogenetic in situ hybridization
Autor: | Nomar Espinosa Waminal, Tae-Jin Yang, Hye Mi Park, Ki-Byung Lim, Hyun Hee Kim, Nam-Hoon Kim, Jin Hong Baek, Yeon-Jeong Kim, Yun Sun Lee |
---|---|
Rok vydání: | 2015 |
Předmět: |
0106 biological sciences
Genetics Genetic diversity Phylogenetic tree Nucleic acid sequence Plant Science Biology biology.organism_classification 010603 evolutionary biology 01 natural sciences Genome Molecular cytogenetics Intergenic region Polyphyly Asphodelaceae Agronomy and Crop Science Ecology Evolution Behavior and Systematics 010606 plant biology & botany |
Zdroj: | Genetic Resources and Crop Evolution. 63:235-242 |
ISSN: | 1573-5109 0925-9864 |
Popis: | Aloe species, which have been used as medicinal plants, belong to the Asphodelaceae family consisting of 530 species. In this study, genetic diversity and phylogenetic relationships among 40 Aloe species including a putative interspecies hybrid were analyzed using PCR band profiles from eight chloroplast intergenic space markers and nucleotide sequence diversity in the psbK–psbI intergenic region. A phylogenetic tree based on psbK–psbI sequences supported the revised classification of the genus Aloe as polyphyletic with several species be re-allocated into three genera Kumara, Aloidendron, and Aloiampelos. Further, the origin of the putative interspecies Aloe hybrid was characterized through molecular cytogenetics. Fluorescence and genomic insitu hybridization illustrated that the hybrid has a bimodal karyotype with a chromosome complement of 2n = 14, of which complementary halves were derived from two parental species, A. vera and A. arborescens. These findings revealed that the hybrid species was allodiploid. The phylogenetic analysis showed that A. arborescens was the maternal genome donor of the hybrid, as both have identical chloroplast genome sequences. We thus conclude that the allodiploid hybrid should be called A. arborescens × A.vera. |
Databáze: | OpenAIRE |
Externí odkaz: |