Computational load reduction in decision functions using support vector machines

Autor: Saturnino Maldonado-Bascón, Javier Acevedo-Rodríguez, Philip Siegmann, S. Lafuente-Arroyo, Francisco López-Ferreras
Rok vydání: 2009
Předmět:
Zdroj: Signal Processing. 89:2066-2071
ISSN: 0165-1684
DOI: 10.1016/j.sigpro.2009.03.032
Popis: A new method of reducing the computational load in decision functions provided by a support vector classification machine is studied. The method exploits the geometrical relations when the kernels used are based on distances to obtain bounds of the remaining decision function and avoids to continue calculating kernel operations when there is no chance to change the decision. The method proposed achieves savings in operations of 25-90% whilst keeping the same accuracy. Although the method is explained for support vector machines, it can be applied to any kernel binary classifier that provides a similar evaluation function.
Databáze: OpenAIRE