On maximum principles for diffusion in the presence of three diffusion paths
Autor: | James M. Hill, Alexander I. Lee |
---|---|
Rok vydání: | 1983 |
Předmět: | |
Zdroj: | The Journal of the Australian Mathematical Society. Series B. Applied Mathematics. 24:417-423 |
ISSN: | 1839-4078 0334-2700 |
DOI: | 10.1017/s0334270000003775 |
Popis: | This note examines maximum principles for systems of parabolic partial differential equations describing diffusion in the presence of three diffusion paths. The particular system under consideration arises from a random walk model. For a more general system constraints on the various constants are given which guarantee maximum principles. Remarkably, the physical system arising from the random walk model automatically satisfies these constraints. |
Databáze: | OpenAIRE |
Externí odkaz: |