On maximum principles for diffusion in the presence of three diffusion paths

Autor: James M. Hill, Alexander I. Lee
Rok vydání: 1983
Předmět:
Zdroj: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics. 24:417-423
ISSN: 1839-4078
0334-2700
DOI: 10.1017/s0334270000003775
Popis: This note examines maximum principles for systems of parabolic partial differential equations describing diffusion in the presence of three diffusion paths. The particular system under consideration arises from a random walk model. For a more general system constraints on the various constants are given which guarantee maximum principles. Remarkably, the physical system arising from the random walk model automatically satisfies these constraints.
Databáze: OpenAIRE