Embedding of a uniquely divisible Abelian semigroup in a convex cone
Autor: | I. V. Orlov |
---|---|
Rok vydání: | 2017 |
Předmět: |
Discrete mathematics
Pure mathematics Mathematics::Operator Algebras Semigroup General Mathematics 010102 general mathematics 01 natural sciences Injective function Divisible group 010101 applied mathematics Dual cone and polar cone Subadditivity Embedding Convex cone 0101 mathematics Abelian group Mathematics |
Zdroj: | Mathematical Notes. 102:361-368 |
ISSN: | 1573-8876 0001-4346 |
DOI: | 10.1134/s0001434617090061 |
Popis: | It is proved that every uniquely divisible Abelian semigroup admits an injective subadditive embedding in a convex cone. As an application, the classical theory of generators of one-parameter operator semigroups is generalized to the case in which the parameter ranges over a uniquely divisible semigroup. |
Databáze: | OpenAIRE |
Externí odkaz: |