A functional equation with a symmetric binary operation
Autor: | Judita Dascăl, Zoltán Daróczy |
---|---|
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Aequationes mathematicae. 82:291-297 |
ISSN: | 1420-8903 0001-9054 |
DOI: | 10.1007/s00010-011-0095-9 |
Popis: | Let X be a nonempty set containing at least two elements and let \({\circ :X^2\to X}\) be a symmetric binary operation. Furthermore, let A, B, C be real parameters and let \({f,g:X\to\mathbb{R}_+}\) be unknown functions. We investigate the functional equation $$f(x\circ y)[Ag(y)-Bg(x)]=(A+C)f(x)g(y)-(B+C)f(y)g(x)\quad {\rm for\,\,all}\,x,y \in X.$$ |
Databáze: | OpenAIRE |
Externí odkaz: |