The pro--Iwahori Hecke algebra of a reductive -adic group I

Autor: Marie-France Vignéras
Rok vydání: 2015
Předmět:
Zdroj: Compositio Mathematica. 152:693-753
ISSN: 1570-5846
0010-437X
DOI: 10.1112/s0010437x15007666
Popis: Let $R$ be a commutative ring, let $F$ be a locally compact non-archimedean field of finite residual field $k$ of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. We show that the pro-$p$-Iwahori Hecke $R$-algebra of $G=\mathbf{G}(F)$ admits a presentation similar to the Iwahori–Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group, and alcove walk bases satisfying Bernstein relations. This was previously known only for a $F$-split group $\mathbf{G}$.
Databáze: OpenAIRE