The pro--Iwahori Hecke algebra of a reductive -adic group I
Autor: | Marie-France Vignéras |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Compositio Mathematica. 152:693-753 |
ISSN: | 1570-5846 0010-437X |
DOI: | 10.1112/s0010437x15007666 |
Popis: | Let $R$ be a commutative ring, let $F$ be a locally compact non-archimedean field of finite residual field $k$ of characteristic $p$, and let $\mathbf{G}$ be a connected reductive $F$-group. We show that the pro-$p$-Iwahori Hecke $R$-algebra of $G=\mathbf{G}(F)$ admits a presentation similar to the Iwahori–Matsumoto presentation of the Iwahori Hecke algebra of a Chevalley group, and alcove walk bases satisfying Bernstein relations. This was previously known only for a $F$-split group $\mathbf{G}$. |
Databáze: | OpenAIRE |
Externí odkaz: |