Autor: |
B.J. Van Heyst, E. Voldner, A.C. McMillan, M. T. Scholtz |
Rok vydání: |
2002 |
Předmět: |
|
Zdroj: |
Atmospheric Environment. 36:5005-5013 |
ISSN: |
1352-2310 |
DOI: |
10.1016/s1352-2310(02)00570-8 |
Popis: |
The application of pesticides to cultivated soil and crops is a major source of pesticides that are found in the atmosphere and which are transported and deposited to land and water surfaces over distances that range from local to global scales. In this first part of a two-part paper, a pesticide emission model (PEM) is proposed for estimating the exchange with the atmosphere of pesticides applied to soils and crops. The basis of PEM is a one-dimensional numerical solution of the dynamic equations describing the advection and diffusion of heat, moisture and pesticide within the soil column and exchange with the atmosphere through heat transfer, evapotranspiration and volatilization. The soil model is coupled with an atmospheric surface layer and a simple canopy model that includes: the interception of sprayed pesticide by the crop foliage; the partitioning of pesticide within a wet or dry canopy; and, the volatilization of pesticide to the atmosphere or the wash-off to the soil by precipitation. The finite-element technique used for solving the model equations is mass conservative and multi-year periods of simulation are possible while maintaining a proper mass balance of pesticide in the soil. The model is solved using 1200 s time-steps and 49 variably spaced levels in the soil to a depth of 2 m, with the highest vertical resolution (0.002 m spacing) near the soil surface. Similarity theory is used to parameterize the fluxes of heat, moisture and pesticide through the atmospheric surface layer with hourly meteorology being provided by either climate station observations or a meteorological model. In the second part to this paper, the results of an evaluation of PEM are reported. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|