THE NATURAL PARTIAL ORDER ON SOME TRANSFORMATION SEMIGROUPS
Autor: | Pattanachai Rawiwan, Sureeporn Chaopraknoi, Teeraphong Phongpattanacharoen |
---|---|
Rok vydání: | 2013 |
Předmět: | |
Zdroj: | Bulletin of the Australian Mathematical Society. 89:279-292 |
ISSN: | 1755-1633 0004-9727 |
DOI: | 10.1017/s0004972713000580 |
Popis: | For a semigroup $S$, let ${S}^{1} $ be the semigroup obtained from $S$ by adding a new symbol 1 as its identity if $S$ has no identity; otherwise let ${S}^{1} = S$. Mitsch defined the natural partial order $\leqslant $ on a semigroup $S$ as follows: for $a, b\in S$, $a\leqslant b$ if and only if $a= xb= by$ and $a= ay$ for some $x, y\in {S}^{1} $. In this paper, we characterise the natural partial order on some transformation semigroups. In these partially ordered sets, we determine the compatibility of their elements, and find all minimal and maximal elements. |
Databáze: | OpenAIRE |
Externí odkaz: |