Lyapunov exponents of the Kuramoto--Sivashinsky PDE

Autor: Russell A. Edson, Judith Bunder, Trent W. Mattner, Anthony J. Roberts
Rok vydání: 2019
Předmět:
Zdroj: ANZIAM Journal. 61:270-285
ISSN: 1445-8810
1446-1811
DOI: 10.21914/anziamj.v61i0.13939
Popis: The Kuramoto–Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto–Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan–Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto–Sivashinsky PDE, and the transition to its one-dimensional turbulence. doi:10.1017/S1446181119000105
Databáze: OpenAIRE