Lyapunov exponents of the Kuramoto--Sivashinsky PDE
Autor: | Russell A. Edson, Judith Bunder, Trent W. Mattner, Anthony J. Roberts |
---|---|
Rok vydání: | 2019 |
Předmět: |
Physics::Computational Physics
Lyapunov function Physics Dynamical systems theory Turbulence Computation Chaotic 010103 numerical & computational mathematics General Medicine Lyapunov exponent 01 natural sciences Domain (mathematical analysis) Nonlinear Sciences::Chaotic Dynamics symbols.namesake symbols Applied mathematics 0101 mathematics Nonlinear Sciences::Pattern Formation and Solitons Bifurcation |
Zdroj: | ANZIAM Journal. 61:270-285 |
ISSN: | 1445-8810 1446-1811 |
DOI: | 10.21914/anziamj.v61i0.13939 |
Popis: | The Kuramoto–Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto–Sivashinsky PDE by calculating the Lyapunov spectra over a large range of domain sizes. Our comprehensive computation and analysis of the Lyapunov exponents and the associated Kaplan–Yorke dimension provides new insights into the chaotic dynamics of the Kuramoto–Sivashinsky PDE, and the transition to its one-dimensional turbulence. doi:10.1017/S1446181119000105 |
Databáze: | OpenAIRE |
Externí odkaz: |