Popis: |
SUMMARYTo optimize decision making, animals need to execute not only a strategy to choose a good option but sometimes also one to avoid a bad option. A psychological study indicates that positive and negative information is processed in a different manner in the brain. The nucleus accumbens (NAc) contains two different types of neurons, dopamine D1 and D2 receptor-expressing neurons which are implicated in reward-based decision making and aversive learning. However, little is known about the neural mechanisms by which D1 or D2 receptor-expressing neurons in the NAc contribute to the execution of the strategy to choose a good option or one to avoid a bad option under decision making. Here, we have developed two novel visual discrimination tasks for mice to assess the strategy to choose a good option and one to avoid a bad option. By chemogenetically suppressing the subpopulation of the NAc neurons, we have shown that dopamine D2 receptor-expressing neurons in the NAc selectively contribute to the strategy to avoid a bad option under reward-based decision making. Furthermore, our optogenetic and calcium imaging experiments indicate that dopamine D2 receptor-expressing neurons are activated by error choices and the activation following an error plays an important role in optimizing the strategy in the next trial. Our findings suggest that the activation of D2 receptor-expressing neurons by error choices through learning enables animals to execute the appropriate strategy. |