The Poincaré problem for foliations on compact toric orbifolds
Autor: | Miguel Rodríguez Peña |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
Homogeneous coordinates Mathematics::Commutative Algebra Mathematics::Complex Variables Holomorphic function Toric variety Algebraic geometry Mathematics::Algebraic Geometry Differential geometry Foliation (geology) Mathematics::Differential Geometry Geometry and Topology Invariant (mathematics) Mathematics::Symplectic Geometry Orbifold Mathematics |
Zdroj: | Geometriae Dedicata. 215:333-353 |
ISSN: | 1572-9168 0046-5755 |
Popis: | We give an optimal upper bound of the degree of quasi-smooth hypersurfaces which are invariant by a one-dimensional holomorphic foliation on a compact toric orbifold, i.e. on a complete simplicial toric variety. This bound depends only on the degree of the foliation and of the degrees of the toric homogeneous coordinates. |
Databáze: | OpenAIRE |
Externí odkaz: |