Substrate specificities of lipases in view of kinetic resolution of unsaturated fatty acids

Autor: Kumar D. Mukherjee, Irmgard Kiewitt, Matthew J. Hills
Rok vydání: 1993
Předmět:
Zdroj: Applied Microbiology and Biotechnology. 40
ISSN: 1432-0614
0175-7598
DOI: 10.1007/bf00175736
Popis: Several commercially available lipases have been evaluated with regard to their substrate specificity in the esterification of fatty acids having specific positions of cis double bonds, e.g. petroselinic acid (n-12 18:1), alpha-linolenic acid (n-3 18:3), gamma-linolenic acid (n-6 18:3), stearidonic acid (n-3 18:4), dihomogamma-linolenic acid (n-6 20:3), eicosapentaenoic acid (n-3 20:5) and docosahexaenoic acid (n-3 22:6), with n-butanol. A common feature of most lipases, e.g. those from Penicillium cyclopium, Candida cylindracea, Mucor miehei, Rhizopus arrhizus and Penicillium sp. is that fatty acids having the first double bond from the carboxyl end as a cis-4 (n-3 22:6), cis-6 (n-12 18:1, n-6 18:3, n-3 18:4) or a cis-8 (n-6 20:3) double bond are strongly discriminated against compared to the other fatty acids, such as myristic acid (14:0), the reference standard, and n-3 18:3. In the case of the lipase from porcine pancreas, however, the discrimination against the above fatty acids is not as strong as with the other lipases. In contrast, the lipase from Chromobacterium viscosum shows a preference for n-12 18:1, n-6 18:3 and n-3 18:4. The observed substrate specificities can be utilized for enrichment of particular fatty acids by lipase-catalysed kinetic resolution from fatty acid mixtures, derived from naturally occurring fats and other lipids.
Databáze: OpenAIRE