Short Communications: Estimates of the Distribution of the Maximumof a Random Field

Autor: E. I. Ostrovskii
Rok vydání: 1998
Předmět:
Zdroj: Theory of Probability & Its Applications. 42:302-310
ISSN: 1095-7219
0040-585X
DOI: 10.1137/s0040585x97976167
Popis: Let $ \xi(t) $ be a random field with values in $ \bR^1$, defined for $ t \in T,\ T$ an arbitrary set. In this paper two-sided exponential estimates are derived for probabilities $ P(T,u) = \bP\{\sup_{t \in T} \xi(t)\break > u \} $: $$ C_1 g_2(u) \l \log P(T,\,u) + g_1(u) \l C_2 g_2(u), $$ where $ g_1(u) $ is a convex function, $u \to \infty \Rightarrow \lim g_1'(u) = \infty$, $\lim [g_2(u)/g_1(u)] = 0$, $C_k$ are positive numbers independent of~u.
Databáze: OpenAIRE