A local Lagrange interpolation method based on $C^{1}$ cubic splines on Freudenthal partitions
Autor: | Frank Zeilfelder, Günther Nürnberger, Larry L. Schumaker, Gero Hecklin |
---|---|
Rok vydání: | 2007 |
Předmět: |
Algebra and Number Theory
Box spline Applied Mathematics Numerical analysis Monotone cubic interpolation Lagrange polynomial Geometry Computational Mathematics symbols.namesake Computer Science::Graphics symbols Partition (number theory) Bicubic interpolation Applied mathematics Spline interpolation Mathematics Interpolation |
Zdroj: | Mathematics of Computation. 77:1017-1037 |
ISSN: | 0025-5718 |
DOI: | 10.1090/s0025-5718-07-02056-x |
Popis: | A trivariate Lagrange interpolation method based on C 1 cubic splines is described. The splines are defined over a special refinement of the Freudenthal partition of a cube partition. The interpolating splines are uniquely determined by data values, but no derivatives are needed. The interpolation method is local and stable, provides optimal order approximation, and has linear complexity. |
Databáze: | OpenAIRE |
Externí odkaz: |