Ab initio atomistic thermodynamical study of oxygen desorption and nitrogen adsorption on $$\hbox {Ti}_2\hbox {O}_3$$ Ti 2 O 3 surfaces
Autor: | Un-Son Ri, Kyong-Il Kim, Mun-Hyok Ri, Yun-Sop Sin |
---|---|
Rok vydání: | 2019 |
Předmět: |
Materials science
020502 materials Mechanical Engineering Ab initio chemistry.chemical_element 02 engineering and technology Oxygen Evaporation (deposition) 0205 materials engineering chemistry Mechanics of Materials Desorption Physical chemistry General Materials Science Stoichiometry Phase diagram Bar (unit) Direct process |
Zdroj: | Journal of Materials Science. 54:5561-5569 |
ISSN: | 1573-4803 0022-2461 |
Popis: | Five surfaces with low Miller indices, including (001), (011), (111), (01 $$\bar{1}$$ ) and (11 $$\bar{1}$$ ), were generated by cleaving rhombohedral $$\hbox {Ti}_2\hbox {O}_3$$ , and their surface energies were compared, which showed that (011) is cleaved more easily than others, followed by (001), (111), (01 $$\bar{1}$$ ) and (11 $$\bar{1}$$ ), so that we focused on (011), (001) and (111) surfaces. Phase diagram of stoichiometric, oxygen-deficient and nitrogen-substituted $$\hbox {Ti}_2\hbox {O}_3$$ (001) surfaces indicated that oxygen evaporation does not take place on stoichiometric surface, and oxygen-to-nitrogen substitution is not a indirect (two-step) process (oxygen evaporation, followed by nitrogen substitution into oxygen vacancies). It was proved from minimum energy path (MEP) and DFT total energy curves over MEP that the energy barrier of direct oxygen-to-nitrogen substitution process is lower than indirect process, and therefore, direct process is easier to take place than indirect process. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |