Function spaces jointly metrizable on compacta

Autor: Vladimir V. Tkachuk
Rok vydání: 2015
Předmět:
Zdroj: Journal of Mathematical Analysis and Applications. 432:1139-1147
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.07.038
Popis: If C p ( X ) is jointly metrizable on compacta, then p ( X ) ≤ ω but ω 1 need not be a caliber of X. If X is either submetrizable or a P-space, then C p ( C p ( X ) ) is jointly metrizable on compacta and, in particular, all compact subsets of C p ( C p ( X ) ) are metrizable. We show that for any dyadic compact X, the space C p ( X ) is jointly metrizable on compacta. Therefore, the JCM property of C p ( X ) for a compact space X does not imply that X is separable. If X is a compact space of countable tightness and C p ( X ) is jointly metrizable on compacta, then it is independent of ZFC whether X must be separable.
Databáze: OpenAIRE