Cycle rank of Lyapunov graphs and the genera of manifolds

Autor: Ricardo N. Cruz, K. A. de Rezende
Rok vydání: 1998
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 126:3715-3720
ISSN: 1088-6826
0002-9939
DOI: 10.1090/s0002-9939-98-04957-0
Popis: We show that the cycle-rank r ( L ) r(L) of a Lyapunov graph L L on a manifold M M satisfies: r ( L ) ≤ g ( M ) r(L) \leq g(M) , where g ( M ) g(M) is the genus of M M . This generalizes a theorem of Franks. We also show that given any integer r r with 0 ≤ r ≤ g ( M ) 0 \leq r \leq g(M) , r = r ( L ) r = r(L) for some Lyapunov graph L L on M , dim ⁡ M > 2 M, \dim M > 2 .
Databáze: OpenAIRE