Effect of coating thickness on the deformation mechanisms in PVD TiN-coated steel

Autor: Paul Munroe, Mark Hoffman, Julie M. Cairney, L.W. Ma
Rok vydání: 2010
Předmět:
Zdroj: Surface and Coatings Technology. 204:1764-1773
ISSN: 0257-8972
DOI: 10.1016/j.surfcoat.2009.11.008
Popis: The deformation mechanisms of a range of TiN coatings with different thicknesses, deposited on a V820 steel substrate following nanoindentation were characterized using focused ion beam (FIB) cross-sectioning and imaging, as well as cross-sectional transmission electron microscopy (TEM) of the indented region. Four TiN coatings were examined, including a cathodic arc evaporation (CAE) coating with a thickness of ∼ 0.7 μm and low voltage electron beam (LVEB) evaporation coatings with thicknesses of ∼ 2.0, ∼ 3.7 and ∼ 4.0 μm. Based on a model developed by Xie et al., the intercolumnar shear stresses were calculated to be approximately 2.20, 3.05, 3.50 and 3.55 GPa in the ∼ 0.7, ∼ 2.0, ∼ 3.7 and ∼ 4.0 μm thick TiN coatings respectively, that is, increasing as the coating thickness increases. Columnar cracking and shear steps at the coating/substrate interface were observed more frequently in the thinner TiN coatings indicated that these coatings deformed predominantly by shear along the columnar grain boundaries. In contrast, inclined cracking was the more dominant fracture type in the thicker TiN coatings. It is suggested that increased grain boundary strength occurs together with a lack of direct crack path along the grain boundaries through the thicker coatings due to the more equiaxed grain structure. Clearly, the grain structure and/or thickness of the TiN coating play a highly significant role in the deformation mechanisms.
Databáze: OpenAIRE