Characterizing projective general unitary groups ${\rm PGU}_3(q^2)$ by their complex group algebras
Autor: | Ali Iranmanesh, Farrokh Shirjian |
---|---|
Rok vydání: | 2017 |
Předmět: |
Classical group
Projective unitary group 010102 general mathematics Projective line over a ring General linear group 01 natural sciences Covering groups of the alternating and symmetric groups Combinatorics Group of Lie type Unitary group 0103 physical sciences 010307 mathematical physics Projective linear group 0101 mathematics Mathematics |
Zdroj: | Czechoslovak Mathematical Journal. 67:819-826 |
Popis: | Let G be a finite group. Let X 1(G) be the first column of the ordinary character table of G. We will show that if X 1(G) = X1(PGU3(q 2)), then G ≅ PGU3(q 2). As a consequence, we show that the projective general unitary groups PGU3(q 2) are uniquely determined by the structure of their complex group algebras. |
Databáze: | OpenAIRE |
Externí odkaz: |