A maximum principle for hypersurfaces with constant scalar curvature and applications
Autor: | Luis J. Alías, S. Carolina García-Martínez, Marco Rigoli |
---|---|
Rok vydání: | 2011 |
Předmět: |
Mean curvature flow
Riemann curvature tensor Prescribed scalar curvature problem Mathematical analysis Curvature General Relativity and Quantum Cosmology symbols.namesake Maximum principle symbols Curvature form Mathematics::Differential Geometry Geometry and Topology Sectional curvature Analysis Scalar curvature Mathematics |
Zdroj: | Annals of Global Analysis and Geometry. 41:307-320 |
ISSN: | 1572-9060 0232-704X |
DOI: | 10.1007/s10455-011-9284-y |
Popis: | In this article, we establish a weak maximum principle for complete hypersurfaces with constant scalar curvature into Riemannian space forms, and give some applications to estimate the norm of the traceless part of its second fundamental form. |
Databáze: | OpenAIRE |
Externí odkaz: |