Design, Synthesis, and Characterization of Templated Metal Sites in Porous Organic Hosts: Application to Reversible Dioxygen Binding
Autor: | Andrew S. Borovik, Anjal C. Sharma and |
---|---|
Rok vydání: | 2000 |
Předmět: | |
Zdroj: | Journal of the American Chemical Society. 122:8946-8955 |
ISSN: | 1520-5126 0002-7863 |
DOI: | 10.1021/ja0014739 |
Popis: | Porous materials with immobilized metal complexes of defined structure have wide applications in catalysis, gas storage, and sensor technology. Reported herein is the use of template copolymerization methods to design and synthesize reversible dioxygen binding sites in a porous organic host. The immobilized metal sites are formed using molecular precursors including a substitutionally inert Co(III) complex that ensures the desired square-pyramidal coordination geometry around the immobilized metal ions. Analysis of the resulting mesoporous polymer by EPR spectroscopy reveals an equilibrium of four- and five-coordinate sites which is similar to that observed for molecular analogues in solution. This equilibrium is sensitive to the solvent used to suspend the polymer, with the highest percentage of five-coordinate sites (60%) observed in CH3NO2, which is the same solvent used to synthesize the polymer. In the presence of dioxygen ∼90% of the immobilized sites convert to Co−O2 adducts. Dioxygen binding to th... |
Databáze: | OpenAIRE |
Externí odkaz: |