Position Encoding Schemes for Linear Aggregation of Word Sequences

Autor: Diego Maupomé, Marie-Jean Meurs, Fanny Rancourt, Maxime D. Armstrong
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the Canadian Conference on Artificial Intelligence.
DOI: 10.21428/594757db.37d7654d
Popis: Deep Averaging Networks (DANs) show strong performance in several key Natural Language Processing (NLP) tasks. However, their chief drawback is not accounting for the position of tokens when encoding sequences. We study how existing position encodings might be integrated into the DAN architecture. In addition, we propose a novel position encoding built specifically for DANs, which allows greater generalization capabilities to unseen lengths of sequences. This is demonstrated on decision tasks on binary sequences. Further, the resulting architecture is compared against unordered aggregation on sentiment analysis both with word- and character-level tokenization, to mixed results.
Databáze: OpenAIRE