Independence number of graphs and line graphs of trees by means of omega invariant

Autor: Ismail Naci Cangul, Fatma Özen Erdoğan, Fikriye Ersoy Zihni, Hacer Ozden, Gautam Srivastava, Hari M. Srivastava
Rok vydání: 2020
Předmět:
Zdroj: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114
ISSN: 1579-1505
1578-7303
DOI: 10.1007/s13398-020-00821-7
Popis: A recently defined graph invariant denoted by $$\varOmega (G)$$ for a graph G is shown to have several applications in graph theory. This number gives direct information on the realizability, number of realizations, connectedness, cyclicness, number of components, chords, loops, pendant edges, faces, bridges, etc. In this paper, we use $$\varOmega $$ to give a characterization of connected unicyclic graphs, to calculate the omega invariant and to formalize the number of faces of the line graph of a tree, and give a new algorithm to formalize the independence number of graphs G and line graphs L(G) by means of the support vertices, pendant vertices and isolated vertices in G.
Databáze: OpenAIRE