Independence number of graphs and line graphs of trees by means of omega invariant
Autor: | Ismail Naci Cangul, Fatma Özen Erdoğan, Fikriye Ersoy Zihni, Hacer Ozden, Gautam Srivastava, Hari M. Srivastava |
---|---|
Rok vydání: | 2020 |
Předmět: |
Algebra and Number Theory
Social connectedness Applied Mathematics 010102 general mathematics Graph theory 01 natural sciences Omega law.invention 010101 applied mathematics Combinatorics Computational Mathematics law Realizability Line graph Geometry and Topology 0101 mathematics Invariant (mathematics) Graph property Analysis MathematicsofComputing_DISCRETEMATHEMATICS Mathematics Independence number |
Zdroj: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 114 |
ISSN: | 1579-1505 1578-7303 |
DOI: | 10.1007/s13398-020-00821-7 |
Popis: | A recently defined graph invariant denoted by $$\varOmega (G)$$ for a graph G is shown to have several applications in graph theory. This number gives direct information on the realizability, number of realizations, connectedness, cyclicness, number of components, chords, loops, pendant edges, faces, bridges, etc. In this paper, we use $$\varOmega $$ to give a characterization of connected unicyclic graphs, to calculate the omega invariant and to formalize the number of faces of the line graph of a tree, and give a new algorithm to formalize the independence number of graphs G and line graphs L(G) by means of the support vertices, pendant vertices and isolated vertices in G. |
Databáze: | OpenAIRE |
Externí odkaz: |