Jordan's principal angles in complex vector spaces

Autor: Aurél Galántai, Cs. J. Hegedűs
Rok vydání: 2006
Předmět:
Zdroj: Numerical Linear Algebra with Applications. 13:589-598
ISSN: 1099-1506
1070-5325
DOI: 10.1002/nla.491
Popis: We analyse the possible recursive definitions of principal angles and vectors in complex vector spaces and give a new projector based definition. This enables us to derive important properties of the principal vectors and to generalize a result of Bjorck and Golub (Math. Comput. 1973; 27(123):579–594), which is the basis of today’s computational procedures in real vector spaces. We discuss other angle definitions and concepts in the last section. Copyright q 2006 John Wiley & Sons, Ltd.
Databáze: OpenAIRE