Nonlinear Lie triple derivations of triangular algebras
Autor: | Rongrong Liu, Yingzi Zhao, Peisheng Ji |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Linear and Multilinear Algebra. 60:1155-1164 |
ISSN: | 1563-5139 0308-1087 |
DOI: | 10.1080/03081087.2011.652109 |
Popis: | Let 𝒯 be a triangular algebra over a 2-torsion free commutative ring R. In this article, under some mild conditions on 𝒯, we prove that if δ: 𝒯 → 𝒯 is a nonlinear mapping satisfying for any x, y, z ∈ 𝒯, then δ = d + τ, where d is an additive derivation of 𝒯 and τ: 𝒯 → Z(𝒯) (where Z(𝒯) is the centre of 𝒯) is a map vanishing at Lie triple products [[x, y], z]. |
Databáze: | OpenAIRE |
Externí odkaz: |