Next Generation Torsional Vibration Isolation Tool Increases BHA Reliability Proven by Field Operations in North Sea

Autor: Armin Kueck, Vincent Kulke, Cord Schepelmann, Volker Peters, Georg-Peter Ostermeyer, Hanno Reckmann
Rok vydání: 2021
Zdroj: Day 2 Tue, November 16, 2021.
DOI: 10.2118/207739-ms
Popis: High Frequency Torsional Oscillations (HFTO) generate high torsional loads in the BHA causing cracks, damaged electronics or twist-offs. A new Torsional Vibration Isolator tool (TVI) protects the BHA by restricting vibrations to the tools between bit and TVI. Additional features have been added to the tool to automatically indicate torque overloading of the BHA and to increase torque resistance if required. This paper proves the functionality of the new features analytically, on a small-scale laboratory test and in multiple field deployments in the North Sea. New guidelines for field operations are provided. The new feature is a torsion limiter which automatically engages on reaching a critical torque threshold. The torque is then re-routed through more torque resistant BHA components. The engagement generates a characteristic signal indicating bit or BHA-overloading. The mechanical design of the new feature is presented. A criterion for engagement of the limiter and the signature indicating critical torque are analytically derived. They are experimentally validated on a scaled version of the TVI in a laboratory test. A prototype of the new tool is manufactured and deployed in multiple field operations in the North Sea previously heavily affected by HFTO. Two high-frequency measuring devices identify critical drilling situations on a scale of Milliseconds. A new guideline for utilization of this tool is developed including recommendations for BHA set-up and operational parameters. The TVI works as intended and protects the upper BHA from torsional loads generated by HFTO. The new feature engages at the predicted contact parameters. The signature indicating critical torque for the BHA was recorded and corresponds to the signature measured in the lab and predicted by the model. The TVI is best placed as close to the bit as possible, and a high-frequency measuring device in the BHA is recommended to record and transmit the contact indicators to surface. Based on field tests a parameter map for drilling torque and RPM is created that displays zones of safe operational parameters in a plain manner for field engineers. The map was validated in the field, and harmful drilling states were prevented by following the recommended drilling parameters. The next generation TVI protects BHAs from damage due to torsional vibrations. The new feature enables operations in stuck-pipe situations by increasing the torque when required. The overloading indicator prevents overstepping the torque limit of the bit and the BHA. The new parameter map and best-practice recommendations transport the learnings to the field in an easy-to-use manner.
Databáze: OpenAIRE