Bayesian Prediction for Progressive Censored Data From the Weibull-Geometric Model

Autor: Sara M. A. M. Ali, Z. F. Jaheen
Rok vydání: 2017
Předmět:
Zdroj: American Journal of Mathematical and Management Sciences. 36:247-258
ISSN: 2325-8454
0196-6324
DOI: 10.1080/01966324.2017.1334603
Popis: SYNOPTIC ABSRACTThis article is concerned with the problem of predicting future observables from the Weibull-geometric model based on progressively Type-II censored data. The Bayes point predictors and the Bayesian prediction intervals are obtained. The one and two-sample prediction techniques are considered. Numerical computations are given to illustrate the performance of the procedures.
Databáze: OpenAIRE