Recursive functions on conditional Galton‐Watson trees

Autor: Nicolas Broutin, Nicolas Fraiman, Luc Devroye
Rok vydání: 2020
Předmět:
Zdroj: Random Structures & Algorithms. 57:304-316
ISSN: 1098-2418
1042-9832
DOI: 10.1002/rsa.20921
Popis: A recursive function on a tree is a function in which each leaf has a given value, and each internal node has a value equal to a function of the number of children, the values of the children, and possibly an explicitly specified random element $U$. The value of the root is the key quantity of interest in general. In this first study, all node values and function values are in a finite set $S$. In this note, we describe the limit behavior when the leaf values are drawn independently from a fixed distribution on $S$, and the tree $T_n$ is a random Galton--Watson tree of size $n$.
Databáze: OpenAIRE