Definable categories and $\mathbb T$-motives

Autor: Mike Prest, Luca Barbieri-Viale
Rok vydání: 2018
Předmět:
Zdroj: Rendiconti del Seminario Matematico della Università di Padova. 139:205-224
ISSN: 0041-8994
DOI: 10.4171/rsmup/139-8
Popis: Making use of Freyd's free abelian category on a preadditive category we show that if $T:D\rightarrow \mathcal{A}$ is a representation of a quiver $D$ in an abelian category $\mathcal{A}$ then there is an abelian category $\mathcal{A} (T)$, a faithful exact functor $F_T: \mathcal{A} (T) \to \mathcal{A}$ and an induced representation $\tilde T: D \to \mathcal{A} (T)$ such that $F_T\tilde T= T$ universally. We then can show that $\mathbb{T}$-motives as well as Nori's motives are given by a certain category of functors on definable categories.
Databáze: OpenAIRE