Abstract P3049: Age-independent Cardiac Protection By Pharmacological Activation Of Beclin-1 During Endotoxemia And Its Association With Energy Metabolic Reprogramming In Myocardium-A Targeted Metabolomics Study
Autor: | Matthew Kim, azadeh nikouee, Raymond Zou, Di Ren, Zhibin He, Ji Li, Lu Wang, Danijel Djukovic, Daniel Raftery, Hayley J Purcell, Daniel Promislow, Yuxiao Sun, Mohammad Goodarzi, Qing-Jun Zhang, Zhi-Ping Liu, Qun S Zang |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Circulation Research. 131 |
ISSN: | 1524-4571 0009-7330 |
Popis: | Background: We previously showed that Beclin-1-dependent autophagy is cardiac protective in a rodent model of endotoxemia using young adult mice. In this report, we compared the potential therapeutic effects of pharmacological Beclin-1 activating peptide, TB-peptide, on the cardiac outcomes of young adult and aged mice during endotoxemia. We further examined alterations in myocardial metabolism induced by lipopolysaccharide (LPS) challenge with and without the TB-peptide treatment. Methods: C57BL/6J mice of 10-week and 24-month-old were challenged by LPS at doses at which cardiac dysfunction occurred. Following the treatment of TB-peptide or control vehicle, heart contractility, circulating cytokines, and myocardial autophagy were evaluated. A targeted metabolomics assay was applied to analyze cardiac metabolism. Results: TB-peptide boosted autophagic response, attenuated cytokine production, and improved cardiac performance in both young and aged mice during endotoxemia. A targeted metabolomics assay was designed to detect a pool of 361 known metabolites, of which 156 were detected in at least one of the heart tissue samples. LPS-induced impairments were found in glucose and amino acid (AA) metabolisms in mice of all ages, and TB-peptide provided ameliorative effects to rescue these alterations. However, lipid metabolites were upregulated in the young group but moderately downregulated in the aged by LPS, suggesting an age-dependent response. TB-peptide mitigated LPS-mediated trend of lipids in the young mice but provided little effect on the aged ones. Conclusion: Pharmacological activation of Beclin-1 by TB-peptide protects the heart in both young and aged population during endotoxemia, suggest a therapeutic potential for sepsis-induced cardiomyopathy. Metabolomics analysis suggests that this age-independent protection by TB-peptide is associated with reprograming of energy production via glucose and AA metabolisms. |
Databáze: | OpenAIRE |
Externí odkaz: |