Statistical Downscaling of Air Dispersion Model Using Neural Network for Delhi
Autor: | Pramila Goyal, Anikender Kumar |
---|---|
Rok vydání: | 2016 |
Předmět: |
010504 meteorology & atmospheric sciences
Artificial neural network Meteorology Mean squared error Statistical model Particulates 010502 geochemistry & geophysics 01 natural sciences Pollution Wind speed Environmental Chemistry Environmental science Statistical dispersion Air quality index Physics::Atmospheric and Oceanic Physics 0105 earth and related environmental sciences Downscaling |
Zdroj: | Aerosol and Air Quality Research. 16:1879-1892 |
ISSN: | 2071-1409 1680-8584 |
DOI: | 10.4209/aaqr.2015.06.0384 |
Popis: | Statistical downscaling methods are used to extract high resolution information from coarse resolution models. The accuracy of a modelling system in analyzing the issues of either continuous or accidental release in the atmosphere is important especially when adverse health effects are expected to be found. Forecasting of air quality levels are commonly performed with either deterministic or statistical. In this study, statistical downscaling approach is investigated for hourly PM10 (particulate matter with aerodynamic diameter < 10 µm) pollutant for Delhi. The statistical downscaling is used on air dispersion model using neural network technique. The air dispersion model is based on analytical solution of advection diffusion equation in Neumann boundary condition for a bounded domain. Power laws are assumed for height dependent wind speed; and downwind and vertical eddy diffusivities are considered as an explicit function of downwind distance and vertical height. The predicted concentration of dispersion model with meteorological variables is used as input parameters to the neural network. It is found that performance of both air dispersion model and “pure” statistical models is inferior to that of the statistical downscaled model. In particular the root mean squares error (RMSE) of the deterministic model is reduced by at least 35% and 45% for hourly and rush hours particulate matter concentrations respectively using statistical downscaling. In addition, the results with statistical downscaled method show that the errors of the forecasts are reduced by at least 30% for stable and unstable-neutral atmospheric conditions. |
Databáze: | OpenAIRE |
Externí odkaz: |