Photochemical Treatment with S-59 Psoralen and Ultraviolet A Light to Control the Fate of Naive or Primed T Lymphocytes In Vivo After Allogeneic Bone Marrow Transplantation

Autor: Robert L. Truitt, Bryon D. Johnson, Carrie Hanke, Sohel Talib, John E. Hearst
Rok vydání: 1999
Předmět:
Zdroj: The Journal of Immunology. 163:5145-5156
ISSN: 1550-6606
0022-1767
Popis: Donor leukocyte infusions after allogeneic bone marrow transplantation can provide a curative graft-vs-leukemia (GVL) effect, but there is a significant risk of graft-vs-host (GVH) disease. A simple and effective method for controlling the fate of naive or primed T-lymphocytes in vivo without eliminating their beneficial properties is needed. In this report, photochemical treatment (PCT) ex vivo with a synthetic psoralen (S-59) and UVA light was evaluated as a pharmacological approach to limiting the proliferation and GVH potential of naive and primed donor T cells in vivo. S-59 rapidly intercalates into and cross-links DNA on UVA illumination. The effects of PCT on T cells were found to be both S-59 and UVA dose dependent. With selected PCT regimens, treated T cells still expressed activation markers (CD25 and CD69) and secreted IL-2 on activation, but they showed limited proliferative capacity in vitro and in vivo. Clonal expansion of CTL in MLR was reduced after PCT, but short term lytic activity of primed CTL was not affected. In a murine model of MHC-mismatched bone marrow transplantation, the addition of PCT-treated T cells to T-depleted bone marrow facilitated donor engraftment and complete chimerism without causing acute or chronic graft-vs-host disease. Allospecific GVL reactivity was reduced but not eliminated after PCT treatment. In an MHC-matched model using host-presensitized donor T cells, PCT significantly reduced GVH-associated mortality without eliminating GVL reactivity. Thus, PCT ex vivo offers a simple, rapid, and inexpensive method by which to control the fate of naive and primed T cells in vivo.
Databáze: OpenAIRE