Simultaneous evolution of multiple dispersal components and kernel
Autor: | Sutirth Dey, V. R. Shree Sruti, Sripad Joshi, P. M. Shreenidhi, Sudipta Tung, Abhishek Mishra, Mohammed Aamir Sadiq |
---|---|
Rok vydání: | 2017 |
Předmět: |
0106 biological sciences
0301 basic medicine Habitat fragmentation Global climate Range (biology) First line Fragmentation (computing) Metapopulation Biology 010603 evolutionary biology 01 natural sciences 03 medical and health sciences 030104 developmental biology Habitat Evolutionary biology Biological dispersal Ecology Evolution Behavior and Systematics |
Zdroj: | Oikos. 127:34-44 |
ISSN: | 0030-1299 |
DOI: | 10.1111/oik.04618 |
Popis: | Global climate is changing rapidly and is accompanied by large-scale fragmentation and destruction of habitats. Since dispersal is the first line of defense for mobile organisms to cope with such adversities in their environment, it is important to understand the causes and consequences of evolution of dispersal. Although dispersal is a complex phenomenon involving multiple dispersal-traits like propensity (tendency to leave the natal patch) and ability (to travel long distances), the relationship between these traits is not always straight-forward, it is not clear whether these traits can evolve simultaneously or not, and how their interactions affect the overall dispersal profile. To investigate these issues, we subjected four large (N~2500) outbred populations of Drosophila melanogaster to artificial selection for increased dispersal, in a setup that mimicked increasing habitat fragmentation over 33 generations. The propensity and ability of the selected populations were significantly greater than the non-selected controls and the difference persisted even in the absence of proximate drivers for dispersal. The dispersal kernel evolved to have significantly greater standard deviation and reduced values of skew and kurtosis, which ultimately translated into the evolution of a greater frequency of long-distance dispersers (LDDs). We also found that although sex-biased dispersal exists in Drosophila melanogaster, its expression can vary depending on which dispersal component is being measured and the environmental condition under which dispersal takes place. Interestingly though, there was no difference between the two sexes in terms of dispersal evolution. We discuss possible reasons for why some of our results do not agree with previous laboratory and field studies. The rapid evolution of multiple components of dispersal and the kernel, expressed even in the absence of stress, indicates that dispersal evolution cannot be ignored while investigating eco-evolutionary phenomena like speed of range expansion, disease spread, evolution of invasive species and destabilization of metapopulation dynamics. |
Databáze: | OpenAIRE |
Externí odkaz: |