Variational analysis for the heat kernels of Chandrasekhar-type operators
Autor: | Sheng-Ya Feng |
---|---|
Rok vydání: | 2017 |
Předmět: |
Applied Mathematics
010102 general mathematics Mathematical analysis Degenerate energy levels Operator theory 01 natural sciences Fourier integral operator Elliptic operator Operator (computer programming) Kernel (statistics) 0103 physical sciences Applied mathematics 0101 mathematics 010306 general physics Analysis Heat kernel Ansatz Mathematics |
Zdroj: | Applicable Analysis. 96:2457-2473 |
ISSN: | 1563-504X 0003-6811 |
Popis: | In this paper, we study a class of degenerate elliptic operators with quadratic potentials by Hamiltonian formalism. Geodesics induced by the operators are explicitly characterized. With the help of a probabilistic ansatz, we generalize our kernel formulae for Ornstein–Uhlenbeck operator with quadratic potential and hence derive the heat kernel for our target operators in terms of integral representation. |
Databáze: | OpenAIRE |
Externí odkaz: |