A fully distributed learning algorithm for power allocation in heterogeneous networks
Autor: | Hajar El Hammouti, Rachid El Azouzi, Loubna Echabbi |
---|---|
Rok vydání: | 2019 |
Předmět: |
Numerical Analysis
Computational complexity theory Computer science 020206 networking & telecommunications 02 engineering and technology Computer Science Applications Theoretical Computer Science Power (physics) Computational Mathematics Global optimum Computational Theory and Mathematics Convergence (routing) Computer Science::Networking and Internet Architecture 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing Distributed learning Macro Throughput (business) Algorithm Software Heterogeneous network |
Zdroj: | Computing. 101:1287-1303 |
ISSN: | 1436-5057 0010-485X |
DOI: | 10.1007/s00607-019-00700-z |
Popis: | In this work, we present a fully distributed Learning algorithm for power allocation in HetNets, referred to as the FLAPH, that reaches the global optimum given by the total social welfare. Using a mix of macro and femto base stations, we discuss opportunities to maximize users global throughput. We prove the convergence of the algorithm and compare its performance with the well-established Gibbs and Max-logit algorithms which ensure convergence to the global optimum. Algorithms are compared in terms of computational complexity, memory space, and time convergence. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |